Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide
نویسندگان
چکیده
Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T'-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications.
منابع مشابه
Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS(2)) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses ...
متن کاملIdentification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.
The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...
متن کاملMultiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
Hydrogen production through water splitting has been considered as a green, pure and high-efficient technique. As an important half-reaction involved, hydrogen evolution reaction is a complex electrochemical process involving liquid-solid-gas three-phase interface behaviour. Therefore, new concepts and strategies of material design are needed to smooth each pivotal step. Here we report a multis...
متن کاملAn efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly...
متن کاملCarbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability.
Fabricating a cost effective hydrogen evolution reaction catalyst without using precious metal elements is in crucial demand for environmentally-benign energy production. In this work, the thin and edge-rich molybdenum disulfide nanosheets, with carbon doped in the interlayers and decorated on graphene, were developed by a facile solvothermal process. The as-synthesized nanohybrids exhibited hi...
متن کامل